HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Image Clustering
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
Metriken
Accuracy
NMI
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
NMI
Paper Title
Repository
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
-
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
VAE
0.334
0.193
Auto-Encoding Variational Bayes
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
TAC
0.992
0.985
Image Clustering with External Guidance
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
CC
0.893
0.859
Contrastive Clustering
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.527
0.394
Deep Adaptive Image Clustering
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
0 of 18 row(s) selected.
Previous
Next