HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Image Clustering
Image Clustering On Imagenet
Image Clustering On Imagenet
Metriken
ARI
Accuracy
NMI
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
ARI
Accuracy
NMI
Paper Title
Repository
MIM-Refiner (D2V2-ViT-H/14)
42.2
67.3
87.2
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
TEMI DINO (ViT-B)
45.9
58.0
81.4
Exploring the Limits of Deep Image Clustering using Pretrained Models
TURTLE (CLIP + DINOv2)
62.5
72.9
88.2
Let Go of Your Labels with Unsupervised Transfer
MIM-Refiner (MAE-ViT-H/14)
45.5
64.6
85.3
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
TEMI MSN (ViT-L)
48.4
61.6
82.5
Exploring the Limits of Deep Image Clustering using Pretrained Models
MAE-CT (ViT-H/16 best)
-
58.0
81.8
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
SCAN
-
39.9
72.0
SCAN: Learning to Classify Images without Labels
SeLa
-
-
66.4
Self-labelling via simultaneous clustering and representation learning
SeCu
41.9
53.5
79.4
Stable Cluster Discrimination for Deep Clustering
CoKe
35.6
47.6
76.2
Stable Cluster Discrimination for Deep Clustering
PRO-DSC
-
65.0
83.4
Exploring a Principled Framework For Deep Subspace Clustering
MAE-CT (ViT-H/16 mean)
-
57.1
81.7
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
0 of 12 row(s) selected.
Previous
Next