HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildclustering
Image Clustering On Imagenet
Image Clustering On Imagenet
Metriken
ARI
Accuracy
NMI
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
ARI
Accuracy
NMI
Paper Title
Repository
MIM-Refiner (D2V2-ViT-H/14)
42.2
67.3
87.2
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
-
TEMI DINO (ViT-B)
45.9
58.0
81.4
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
TURTLE (CLIP + DINOv2)
62.5
72.9
88.2
Let Go of Your Labels with Unsupervised Transfer
-
MIM-Refiner (MAE-ViT-H/14)
45.5
64.6
85.3
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
-
TEMI MSN (ViT-L)
48.4
61.6
82.5
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
MAE-CT (ViT-H/16 best)
-
58.0
81.8
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
SCAN
-
39.9
72.0
SCAN: Learning to Classify Images without Labels
-
SeLa
-
-
66.4
Self-labelling via simultaneous clustering and representation learning
-
SeCu
41.9
53.5
79.4
Stable Cluster Discrimination for Deep Clustering
-
CoKe
35.6
47.6
76.2
Stable Cluster Discrimination for Deep Clustering
-
PRO-DSC
-
65.0
83.4
Exploring a Principled Framework For Deep Subspace Clustering
MAE-CT (ViT-H/16 mean)
-
57.1
81.7
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
0 of 12 row(s) selected.
Previous
Next
Image Clustering On Imagenet | SOTA | HyperAI