HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Bildclustering
Image Clustering On Imagenet
Image Clustering On Imagenet
Metriken
ARI
Accuracy
NMI
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
ARI
Accuracy
NMI
Paper Title
TURTLE (CLIP + DINOv2)
62.5
72.9
88.2
Let Go of Your Labels with Unsupervised Transfer
MIM-Refiner (D2V2-ViT-H/14)
42.2
67.3
87.2
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
PRO-DSC
-
65.0
83.4
Exploring a Principled Framework For Deep Subspace Clustering
MIM-Refiner (MAE-ViT-H/14)
45.5
64.6
85.3
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
TEMI MSN (ViT-L)
48.4
61.6
82.5
Exploring the Limits of Deep Image Clustering using Pretrained Models
TEMI DINO (ViT-B)
45.9
58.0
81.4
Exploring the Limits of Deep Image Clustering using Pretrained Models
MAE-CT (ViT-H/16 best)
-
58.0
81.8
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
MAE-CT (ViT-H/16 mean)
-
57.1
81.7
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
SeCu
41.9
53.5
79.4
Stable Cluster Discrimination for Deep Clustering
CoKe
35.6
47.6
76.2
Stable Cluster Discrimination for Deep Clustering
SCAN
-
39.9
72.0
SCAN: Learning to Classify Images without Labels
SeLa
-
-
66.4
Self-labelling via simultaneous clustering and representation learning
0 of 12 row(s) selected.
Previous
Next
Image Clustering On Imagenet | SOTA | HyperAI