HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Bildclustering
Image Clustering On Cifar 100
Image Clustering On Cifar 100
Metriken
ARI
Accuracy
NMI
Train Set
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
ARI
Accuracy
NMI
Train Set
Paper Title
TURTLE (CLIP + DINOv2)
0.834
0.898
0.915
-
Let Go of Your Labels with Unsupervised Transfer
PRCut (DinoV2)
-
0.789
0.856
-
Deep Clustering via Probabilistic Ratio-Cut Optimization
PRO-DSC
-
0.773
0.824
-
Exploring a Principled Framework For Deep Subspace Clustering
TEMI CLIP ViT-L (openai)
0.612
0.737
0.799
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
TEMI DINO ViT-B
0.533
0.671
0.769
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
ITAE
0.5053
0.6502
0.771
Test
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
SPICE*
0.422
0.584
0.583
Train
SPICE: Semantic Pseudo-labeling for Image Clustering
HUME
0.377
0.555
-
Train
-
DPAC
0.393
0.555
0.542
-
Deep Online Probability Aggregation Clustering
SPICE-BPA
0.402
0.550
0.560
-
The Balanced-Pairwise-Affinities Feature Transform
TCL
0.357
0.531
0.529
Train
Twin Contrastive Learning for Online Clustering
IMC-SwAV (Best)
0.361
0.519
0.527
Train
Information Maximization Clustering via Multi-View Self-Labelling
SCAN
0.333
0.507
0.486
Train
SCAN: Learning to Classify Images without Labels
IMC-SwAV (Avg+-)
0.337
0.49
0.503
-
Information Maximization Clustering via Multi-View Self-Labelling
ConCURL
0.303
0.479
0.468
Train
Representation Learning for Clustering via Building Consensus
SCAN (Avg)
0.301
0.459
0.468
Train
SCAN: Learning to Classify Images without Labels
C3
0.275
0.451
0.434
-
C3: Cross-instance guided Contrastive Clustering
MMDC
-
0.446
0.418
-
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
CoHiClust
0.299
0.437
0.467
-
Contrastive Hierarchical Clustering
CC
0.266
0.429
0.431
-
Contrastive Clustering
0 of 30 row(s) selected.
Previous
Next
Image Clustering On Cifar 100 | SOTA | HyperAI