Image Classification On Tiny Imagenet 1
Metriken
Validation Acc
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Validation Acc |
---|---|
data-efficient-training-of-cnns-and | 91.90 |
update-in-unit-gradient | 90.74% |
boosting-discriminative-visual-representation | 72.18% |
upanets-learning-from-the-universal-pixel | 67.67 |
Modell 5 | 72.39 |
update-in-unit-gradient | 91.02% |
Modell 7 | 68.04 |
automix-unveiling-the-power-of-mixup | 67.33% |
automix-unveiling-the-power-of-mixup | 70.72% |
ocd-learning-to-overfit-with-conditional | 90.8% |
convolutional-xformers-for-vision | 49.56 |
wavemix-lite-a-resource-efficient-neural-1 | 54.76 |
vision-transformers-in-2022-an-update-on-tiny | 91.35% |
Modell 14 | 71.56 |
direction-concentration-learning-enhancing | 84.39% |
mixmo-mixing-multiple-inputs-for-multiple | 70.24% |
context-aware-compilation-of-dnn-training | 73.6% |
densenet-models-for-tiny-imagenet | 60% |
astroformer-more-data-might-not-be-all-you | 92.98 |
wavemix-lite-a-resource-efficient-neural | 77.47% |
boosting-discriminative-visual-representation | 68.89% |
ocd-learning-to-overfit-with-conditional | 92.0% |