Image Classification On Stanford Cars
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
resmlp-feedforward-networks-for-image | 84.6 |
understanding-gaussian-attention-bias-of | 83.89 |
incorporating-convolution-designs-into-visual | 93.2 |
transboost-improving-the-best-imagenet | 90.80% |
resmlp-feedforward-networks-for-image | 89.5 |
incorporating-convolution-designs-into-visual | 94.1 |
levit-a-vision-transformer-in-convnet-s | 88.4 |
levit-a-vision-transformer-in-convnet-s | 88.2 |
levit-a-vision-transformer-in-convnet-s | 89.3 |
efficientnetv2-smaller-models-and-faster | 94.6 |
with-a-little-help-from-my-friends-nearest | 67.1 |
global-filter-networks-for-image | 93.2 |
efficientnetv2-smaller-models-and-faster | 93.8 |
incorporating-convolution-designs-into-visual | 90.5 |
stochastic-subsampling-with-average-pooling | 85.812 |
levit-a-vision-transformer-in-convnet-s | 88.6 |
efficientnetv2-smaller-models-and-faster | 95.1 |
domain-adaptive-transfer-learning-on-visual | 94.1 |
going-deeper-with-image-transformers | 94.2 |
imagenet-21k-pretraining-for-the-masses | 96.32 |
incorporating-convolution-designs-into-visual | 93 |
levit-a-vision-transformer-in-convnet-s | 89.8 |
efficient-adaptive-ensembling-for-image | 96.879 |
understanding-gaussian-attention-bias-of | 93.743 |