HyperAI

Image Classification On Stanford Cars

Metriken

Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy
resmlp-feedforward-networks-for-image84.6
understanding-gaussian-attention-bias-of83.89
incorporating-convolution-designs-into-visual93.2
transboost-improving-the-best-imagenet90.80%
resmlp-feedforward-networks-for-image89.5
incorporating-convolution-designs-into-visual94.1
levit-a-vision-transformer-in-convnet-s88.4
levit-a-vision-transformer-in-convnet-s88.2
levit-a-vision-transformer-in-convnet-s89.3
efficientnetv2-smaller-models-and-faster94.6
with-a-little-help-from-my-friends-nearest67.1
global-filter-networks-for-image93.2
efficientnetv2-smaller-models-and-faster93.8
incorporating-convolution-designs-into-visual90.5
stochastic-subsampling-with-average-pooling85.812
levit-a-vision-transformer-in-convnet-s88.6
efficientnetv2-smaller-models-and-faster95.1
domain-adaptive-transfer-learning-on-visual94.1
going-deeper-with-image-transformers94.2
imagenet-21k-pretraining-for-the-masses96.32
incorporating-convolution-designs-into-visual93
levit-a-vision-transformer-in-convnet-s89.8
efficient-adaptive-ensembling-for-image96.879
understanding-gaussian-attention-bias-of93.743