HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildklassifizierung
Image Classification On Stanford Cars
Image Classification On Stanford Cars
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
ResMLP-12
84.6
ResMLP: Feedforward networks for image classification with data-efficient training
ViT-M/16 (RPE w/ GAB)
83.89
Understanding Gaussian Attention Bias of Vision Transformers Using Effective Receptive Fields
CeiT-S
93.2
Incorporating Convolution Designs into Visual Transformers
TransBoost-ResNet50
90.80%
TransBoost: Improving the Best ImageNet Performance using Deep Transduction
ResMLP-24
89.5
ResMLP: Feedforward networks for image classification with data-efficient training
CeiT-S (384 finetune resolution)
94.1
Incorporating Convolution Designs into Visual Transformers
LeViT-128S
88.4
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT-256
88.2
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT-384
89.3
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
EfficientNetV2-M
94.6
EfficientNetV2: Smaller Models and Faster Training
NNCLR
67.1
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
GFNet-H-B
93.2
Global Filter Networks for Image Classification
EfficientNetV2-S
93.8
EfficientNetV2: Smaller Models and Faster Training
CeiT-T
90.5
Incorporating Convolution Designs into Visual Transformers
SE-ResNet-101 (SAP)
85.812
Stochastic Subsampling With Average Pooling
-
LeViT-128
88.6
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
EfficientNetV2-L
95.1
EfficientNetV2: Smaller Models and Faster Training
ImageNet + iNat on WS-DAN
94.1
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
CaiT-M-36 U 224
94.2
-
-
TResNet-L-V2
96.32
ImageNet-21K Pretraining for the Masses
0 of 24 row(s) selected.
Previous
Next