HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildklassifizierung
Image Classification On Mnist
Image Classification On Mnist
Metriken
Percentage error
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Percentage error
Paper Title
Repository
MCDNN
0.23
Multi-column Deep Neural Networks for Image Classification
-
SEER (RegNet10B)
0.58
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
-
Second Order Neural Ordinary Differential Equation
0.37
On Second Order Behaviour in Augmented Neural ODEs
-
FLSCNN
0.4
Enhanced Image Classification With a Fast-Learning Shallow Convolutional Neural Network
-
PCANet
0.6
PCANet: A Simple Deep Learning Baseline for Image Classification?
-
CNN+ Wilson-Cowan model RNN
-
Learning in Wilson-Cowan model for metapopulation
-
BNM NiN
0.24
Batch-normalized Maxout Network in Network
-
ResNet-9
-
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
-
Deep Fried Convnets
0.7
Deep Fried Convnets
-
EXACT (M3-CNN)
0.33
EXACT: How to Train Your Accuracy
-
SimpleNetv1
0.25
Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures
-
NiN
0.5
Network In Network
-
Tsetlin Machine
1.8
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic
-
VGG-5 (Spinal FC)
0.28
SpinalNet: Deep Neural Network with Gradual Input
-
StiDi-BP in R-CSNN
-
Spike time displacement based error backpropagation in convolutional spiking neural networks
-
Explaining and Harnessing Adversarial Examples
0.8
Explaining and Harnessing Adversarial Examples
-
pFedBreD_ns_mg
-
Personalized Federated Learning with Hidden Information on Personalized Prior
-
Wilson-Cowan model RNN
-
Learning in Wilson-Cowan model for metapopulation
-
RMDL (30 RDLs)
0.18
RMDL: Random Multimodel Deep Learning for Classification
-
TAAF-CNN
0.48%
Evaluating the Performance of TAAF for image classification models
0 of 80 row(s) selected.
Previous
Next