HyperAI

Image Captioning On Nocaps Xd Entire

Metriken

B1
B2
B3
B4
CIDEr
METEOR
ROUGE-L
SPICE

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
B1
B2
B3
B4
CIDEr
METEOR
ROUGE-L
SPICE
Paper TitleRepository
Neural Baby Talk72.3352.4230.8314.7353.3621.5248.879.15--
Microsoft Cognitive Services team85.6271.3653.6234.65114.2531.2761.214.85Scaling Up Vision-Language Pre-training for Image Captioning-
Human76.6456.4636.3719.4885.3428.1552.8314.67--
test_cbs279.1760.2939.0620.8185.0226.5453.3912.74--
GIT88.174.8157.6837.35123.3932.563.1215.94GIT: A Generative Image-to-text Transformer for Vision and Language
UpDown + ELMo + CBS76.5956.7435.3918.4173.0924.4251.8211.2--
GIT288.4375.0257.8737.65124.7732.5663.1916.06GIT: A Generative Image-to-text Transformer for Vision and Language
UpDown74.055.1135.2319.1654.2522.9650.9210.14--
Neural Baby Talk + CBS73.4252.1229.3512.8861.4822.0648.749.69--
icp2ssi1_coco_si_0.02_5_test78.7761.5441.8523.7785.325.9654.5911.84--
Microsoft Cognitive Services team82.2766.0447.4828.95100.1229.4758.2614.04VIVO: Visual Vocabulary Pre-Training for Novel Object Captioning-
VLAF283.6967.9649.3829.69102.3929.6858.9914.71--
0 of 12 row(s) selected.