HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Graphenregression
Graph Regression On Zinc Full
Graph Regression On Zinc Full
Metriken
Test MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Test MAE
Paper Title
GCN
0.152±0.023
Semi-Supervised Classification with Graph Convolutional Networks
GraphSAGE
0.126±0.003
Inductive Representation Learning on Large Graphs
GATv2
0.079±0.004
How Attentive are Graph Attention Networks?
GAT
0.078±0.006
Graph Attention Networks
GIN
0.068±0.004
How Powerful are Graph Neural Networks?
PNA
0.057±0.007
Principal Neighbourhood Aggregation for Graph Nets
TokenGT
0.047±0.010
Pure Transformers are Powerful Graph Learners
δ-2-LGNN
0.045±0.006
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
δ-2-GNN
0.042±0.003
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
Graphormer
0.036±0.002
Do Transformers Really Perform Bad for Graph Representation?
ESA (Edge set attention, no positional encodings)
0.027±0.001
An end-to-end attention-based approach for learning on graphs
GraphGPS
0.024±0.007
Recipe for a General, Powerful, Scalable Graph Transformer
SignNet
0.024±0.003
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
GRIT
0.023
Graph Inductive Biases in Transformers without Message Passing
ESA + RWSE (Edge set attention, Random Walk Structural Encoding)
0.017±0.001
An end-to-end attention-based approach for learning on graphs
ESA + RWSE (Edge set attention, Random Walk Structural Encoding, tuned)
0.0154±0.0001
An end-to-end attention-based approach for learning on graphs
TIGT
0.014
Topology-Informed Graph Transformer
ESA + RWSE + CY2C (Edge set attention, Random Walk Structural Encoding, clique adjacency, tuned)
0.0122±0.0004
An end-to-end attention-based approach for learning on graphs
ESA + rings + NodeRWSE + EdgeRWSE
0.0109±0.0002
An end-to-end attention-based approach for learning on graphs
0 of 19 row(s) selected.
Previous
Next
Graph Regression On Zinc Full | SOTA | HyperAI