HyperAI

Graph Regression On Zinc Full

Metriken

Test MAE

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameTest MAE
how-powerful-are-graph-neural-networks0.068±0.004
towards-a-practical-k-dimensional-weisfeiler0.045±0.006
masked-attention-is-all-you-need-for-graphs0.0109±0.0002
pure-transformers-are-powerful-graph-learners0.047±0.010
towards-a-practical-k-dimensional-weisfeiler0.042±0.003
masked-attention-is-all-you-need-for-graphs0.0154±0.0001
graph-inductive-biases-in-transformers0.023
recipe-for-a-general-powerful-scalable-graph0.024±0.007
do-transformers-really-perform-bad-for-graph0.036±0.002
semi-supervised-classification-with-graph0.152±0.023
masked-attention-is-all-you-need-for-graphs0.017±0.001
principal-neighbourhood-aggregation-for-graph0.057±0.007
topology-informed-graph-transformer0.014
how-attentive-are-graph-attention-networks0.079±0.004
graph-attention-networks0.078±0.006
masked-attention-is-all-you-need-for-graphs0.0122±0.0004
sign-and-basis-invariant-networks-for0.024±0.003
inductive-representation-learning-on-large0.126±0.003
masked-attention-is-all-you-need-for-graphs0.027±0.001