HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Graph Regression
Graph Regression On Zinc
Graph Regression On Zinc
Metriken
MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
MAE
Paper Title
Repository
GPS
0.070 ± 0.002
Recipe for a General, Powerful, Scalable Graph Transformer
N2-GNN
0.059
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
PIN
0.096
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
-
PDF
0.066 ± 0.002
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
ESA + rings + NodeRWSE + EdgeRWSE
0.051
An end-to-end attention-based approach for learning on graphs
-
CSA
0.056
Self-Attention in Colors: Another Take on Encoding Graph Structure in Transformers
CRaWl+VN
0.088
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
GraphMLPMixer
0.075 ± 0.001
A Generalization of ViT/MLP-Mixer to Graphs
BoP
0.297
From Primes to Paths: Enabling Fast Multi-Relational Graph Analysis
MMA
0.156
Multi-Mask Aggregators for Graph Neural Networks
GRIT
0.059
Graph Inductive Biases in Transformers without Message Passing
ChebNet
0.360
An Experimental Study of the Transferability of Spectral Graph Networks
NeuralWalker
0.065 ± 0.001
Learning Long Range Dependencies on Graphs via Random Walks
FactorGCN
0.366
Factorizable Graph Convolutional Networks
SAGNN
0.072±0.002
Substructure Aware Graph Neural Networks
CIN-small
0.094
Weisfeiler and Lehman Go Cellular: CW Networks
PNA
0.142
Principal Neighbourhood Aggregation for Graph Nets
EIGENFORMER
0.077
Graph Transformers without Positional Encodings
-
CIN++
0.074
CIN++: Enhancing Topological Message Passing
TIGT
0.057
Topology-Informed Graph Transformer
0 of 27 row(s) selected.
Previous
Next