HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Graphenregression
Graph Regression On Pcqm4Mv2 Lsc
Graph Regression On Pcqm4Mv2 Lsc
Metriken
Test MAE
Validation MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Test MAE
Validation MAE
Paper Title
MLP-Fingerprint
0.1760
0.1753
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
GCN
0.1398
0.1379
Semi-Supervised Classification with Graph Convolutional Networks
GIN
0.1218
0.1195
How Powerful are Graph Neural Networks?
TokenGT
0.0919
0.0910
Pure Transformers are Powerful Graph Learners
EGT+SSA
-
0.0876
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
GRPE-Large
0.0876
0.0867
GRPE: Relative Positional Encoding for Graph Transformer
EGT+SSA+Self-ensemble
-
0.0865
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Graphormer
-
0.0864
Do Transformers Really Perform Bad for Graph Representation?
Graphormer + GFSA
-
0.0860
Graph Convolutions Enrich the Self-Attention in Transformers!
GRIT
-
0.0859
Graph Inductive Biases in Transformers without Message Passing
EGT
0.0862
0.0857
Global Self-Attention as a Replacement for Graph Convolution
GPS
0.0862
0.0852
Recipe for a General, Powerful, Scalable Graph Transformer
GPTrans-T
0.0842
0.0833
Graph Propagation Transformer for Graph Representation Learning
TIGT
-
0.0826
Topology-Informed Graph Transformer
GPTrans-L
0.0821
0.0809
Graph Propagation Transformer for Graph Representation Learning
Transformer-M
0.0782
0.0772
One Transformer Can Understand Both 2D & 3D Molecular Data
Uni-Mol+
0.0705
0.0693
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
EGT + Triangular Attention
0.0683
0.0671
Global Self-Attention as a Replacement for Graph Convolution
TGT-At
0.0683
0.0671
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
ESA (Edge set attention, no positional encodings)
N/A
0.0235
An end-to-end attention-based approach for learning on graphs
0 of 20 row(s) selected.
Previous
Next