HyperAI

Graph Property Prediction On Ogbg Ppa

Metriken

Ext. data
Number of params
Test Accuracy
Validation Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameExt. dataNumber of paramsTest AccuracyValidation Accuracy
breaking-the-expressive-bottlenecks-of-graph-1No13693970.7976 ± 0.00720.7518 ± 0.0080
semi-supervised-classification-with-graphNo4794370.6839 ± 0.00840.6497 ± 0.0034
unlocking-the-potential-of-classic-gnns-forNo55475570.8258 ± 0.00550.7815 ± 0.0043
unlocking-the-potential-of-classic-gnns-forNo55496050.8077 ± 0.00410.7586 ± 0.0032
Modell 5No40067040.7432 ± 0.00330.6989 ± 0.0037
deepergcn-all-you-need-to-train-deeper-gcnsNo23364210.7712 ± 0.00710.7313 ± 0.0078
how-powerful-are-graph-neural-networksNo32880420.7037 ± 0.01070.6678 ± 0.0105
flag-adversarial-data-augmentation-for-graph-1No23364210.7752 ± 0.00690.7484 ± 0.0052
flag-adversarial-data-augmentation-for-graph-1No18369420.6905 ± 0.00920.6465 ± 0.0070
Modell 10No163461660.8201 ± 0.00190.7720 ± 0.0023
unlocking-the-potential-of-classic-gnns-forNo81736050.8107 ± 0.00530.7786 ± 0.0095
Modell 12No37171600.7828 ± 0.00240.7523 ± 0.0028
flag-adversarial-data-augmentation-for-graph-1No19305370.6944 ± 0.00520.6638 ± 0.0055
flag-adversarial-data-augmentation-for-graph-1No32880420.7245 ± 0.01140.6789 ± 0.0079
how-powerful-are-graph-neural-networksNo18369420.6892 ± 0.01000.6562 ± 0.0107
Modell 16No37586420.8140 ± 0.00280.7811 ± 0.0012
semi-supervised-classification-with-graphNo19305370.6857 ± 0.00610.6511 ± 0.0048
recipe-for-a-general-powerful-scalable-graphNo34345330.80150.7556 ± 0.0027