HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Graphenklassifikation
Graph Classification On Nci1
Graph Classification On Nci1
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
TFGW ADJ (L=2)
88.1%
Template based Graph Neural Network with Optimal Transport Distances
ESA (Edge set attention, no positional encodings)
87.835±0.644
An end-to-end attention-based approach for learning on graphs
WKPI-kmeans
87.2%
Learning metrics for persistence-based summaries and applications for graph classification
FGW wl h=4 sp
86.42%
Optimal Transport for structured data with application on graphs
WL-OA
86.1%
On Valid Optimal Assignment Kernels and Applications to Graph Classification
WL-OA Kernel
86.1%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
FGW wl h=2 sp
85.82%
Optimal Transport for structured data with application on graphs
WWL
85.75%
Wasserstein Weisfeiler-Lehman Graph Kernels
DUGNN
85.50%
Learning Universal Adversarial Perturbations with Generative Models
δ-2-LWL
85.5%
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
CIN++
85.3%
CIN++: Enhancing Topological Message Passing
CORE-WL
85.12%
Graph Kernels: A Survey
GraphGPS
85.110±1.423
Recipe for a General, Powerful, Scalable Graph Transformer
GAT
85.109±1.107
Graph Attention Networks
PIN
85.1%
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
PNA
84.964±1.391
Principal Neighbourhood Aggregation for Graph Nets
Norm-GN
84.87%
A New Perspective on the Effects of Spectrum in Graph Neural Networks
GIN
84.818±0.936
How Powerful are Graph Neural Networks?
CAN
84.5%
Cell Attention Networks
Propagation kernels (pk)
84.5%
Propagation kernels: efficient graph kernels from propagated information
0 of 67 row(s) selected.
Previous
Next
Graph Classification On Nci1 | SOTA | HyperAI