HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Graphenklassifikation
Graph Classification On Mnist
Graph Classification On Mnist
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
ESA (Edge set attention, no positional encodings, tuned)
98.917±0.020
An end-to-end attention-based approach for learning on graphs
NeuralWalker
98.760 ± 0.079
Learning Long Range Dependencies on Graphs via Random Walks
ESA (Edge set attention, no positional encodings)
98.753±0.041
An end-to-end attention-based approach for learning on graphs
GatedGCN+
98.712 ± 0.137
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
CKGCN
98.423
CKGConv: General Graph Convolution with Continuous Kernels
Exphormer
98.414±0.038
Exphormer: Sparse Transformers for Graphs
GCN+
98.382 ± 0.095
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
EIGENFORMER
98.362
Graph Transformers without Positional Encodings
TIGT
98.230±0.133
Topology-Informed Graph Transformer
EGT
98.173
Global Self-Attention as a Replacement for Graph Convolution
GRIT
98.108
Graph Inductive Biases in Transformers without Message Passing
GPS
98.05
Recipe for a General, Powerful, Scalable Graph Transformer
GatedGCN
97.340
Benchmarking Graph Neural Networks
0 of 13 row(s) selected.
Previous
Next