Graph Classification On Malnet Tiny
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
| Paper Title | ||
|---|---|---|
| ESA (Edge set attention, no positional encodings) | 94.800±0.424 | An end-to-end attention-based approach for learning on graphs |
| GatedGCN+ | 94.600±0.570 | Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence |
| Exphormer | 94.02±0.209 | Exphormer: Sparse Transformers for Graphs |
| GPS | 93.36 ± 0.6 | Recipe for a General, Powerful, Scalable Graph Transformer |
0 of 4 row(s) selected.