HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Betrugserkennung
Fraud Detection On Baf Base
Fraud Detection On Baf Base
Metriken
Recall @ 1% FPR
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Recall @ 1% FPR
Paper Title
LightGBM
25.2%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGS
21%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
CART+RIFF
18.4%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
CART
16%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGS+RIFF
15.8%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGU+RIFF
15.5%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
LightGBM
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
1D-CSNN
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
MLP–NN
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
CatBoost
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
1D-CSNN
-
Improving Fraud Detection with 1D-Convolutional Spiking Neural Networks Through Bayesian Optimization
LightGBM
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
0 of 12 row(s) selected.
Previous
Next
Fraud Detection On Baf Base | SOTA | HyperAI