HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Betrugserkennung
Fraud Detection On Amazon Fraud
Fraud Detection On Amazon Fraud
Metriken
AUC-ROC
Averaged Precision
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC-ROC
Averaged Precision
Paper Title
LEX-GNN
97.91
92.18
LEX-GNN: Label-Exploring Graph Neural Network for Accurate Fraud Detection
GTAN
97.50
89.26
Semi-supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation
RLC-GNN
97.48
-
RLC-GNN: An Improved Deep Architecture for Spatial-Based Graph Neural Network with Application to Fraud Detection
RioGNN
96.19
-
Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks
PC-GNN
95.86
85.49
Pick and Choose: A GNN-based Imbalanced Learning Approach for Fraud Detection
CARE-GNN
89.73
82.19
Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters
0 of 6 row(s) selected.
Previous
Next
Fraud Detection On Amazon Fraud | SOTA | HyperAI