HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Formation Energy
Formation Energy On Materials Project
Formation Energy On Materials Project
Metriken
MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
MAE
Paper Title
Repository
Matformer
21.2
Periodic Graph Transformers for Crystal Material Property Prediction
SchNet
35
SchNet - a deep learning architecture for molecules and materials
PotNet
18.8
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
MEGNet
28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
SchNet
31.8
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
CGCNN
39
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
CartNet
17.47
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
MT-CGCNN
41
MT-CGCNN: Integrating Crystal Graph Convolutional Neural Network with Multitask Learning for Material Property Prediction
SchNet-edge-update
22.7
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
0 of 9 row(s) selected.
Previous
Next