HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Fine Grained Image Classification
Fine Grained Image Classification On Oxford
Fine Grained Image Classification On Oxford
Metriken
Accuracy
FLOPS
PARAMS
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
FLOPS
PARAMS
Paper Title
Repository
ResNet50 (A1)
97.9%
4.1
24M
ResNet strikes back: An improved training procedure in timm
Grafit (RegNet-8GF)
99.1%
-
-
Grafit: Learning fine-grained image representations with coarse labels
-
AutoFormer-S | 384
-
-
-
AutoFormer: Searching Transformers for Visual Recognition
Wide-ResNet-101 (Spinal FC)
99.30%
-
-
SpinalNet: Deep Neural Network with Gradual Input
DenseNet-201
98.29
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
-
PC Bilinear CNN
93.65%
-
-
Pairwise Confusion for Fine-Grained Visual Classification
ResMLP-12
97.4%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
NAT-M3
98.1
250M
3.7M
Neural Architecture Transfer
µ2Net (ViT-L/16)
99.61%
-
-
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
TNT-B
99.0%
-
65.6M
Transformer in Transformer
DenseNet-201(Spinal FC)
98.36
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
-
NAT-M1
-
152M
3.3M
Neural Architecture Transfer
BiT-M (ResNet)
99.30%
-
-
Big Transfer (BiT): General Visual Representation Learning
ResMLP-24
97.9%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
CCT-14/7x2
-
15G
22.5M
Escaping the Big Data Paradigm with Compact Transformers
AutoAugment
95.36%
-
-
AutoAugment: Learning Augmentation Policies from Data
IELT
99.64%
-
-
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
NAT-M2
97.9
195M
3.4M
Neural Architecture Transfer
FixInceptionResNet-V2
95.7%
-
-
Fixing the train-test resolution discrepancy
Assemble-ResNet
98.9%
-
-
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
0 of 25 row(s) selected.
Previous
Next