HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Few Shot Image Classification
Few Shot Image Classification On Omniglot 1 1
Few Shot Image Classification On Omniglot 1 1
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
TapNet
98.07%
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning
Matching Nets
93.8%
Matching Networks for One Shot Learning
MAML++
97.7
HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
MAML++
97.65
How to train your MAML
VAMPIRE
93.2
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Prototypical Networks
96%
Prototypical Networks for Few-shot Learning
DCN6-E
99.11
Decoder Choice Network for Meta-Learning
Hyperbolic ProtoNet
95.9%
Hyperbolic Image Embeddings
MT-net
96.2%
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
MC2+
88%
Meta-Curvature
ConvNet with Memory Module
95%
Learning to Remember Rare Events
GCR
99.63
Few-Shot Learning with Global Class Representations
APL
97.2%
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
adaCNN (DF)
96.12%
Rapid Adaptation with Conditionally Shifted Neurons
-
MR-MAML
83.3
Meta-Learning without Memorization
Relation Net
97.6%
Learning to Compare: Relation Network for Few-Shot Learning
Reptile + Transduction
89.43%
On First-Order Meta-Learning Algorithms
Neural Statistician
93.2%
Towards a Neural Statistician
iMAML, Hessian-Free
96.18
Meta-Learning with Implicit Gradients
DCN4
98.8%
Decoder Choice Network for Meta-Learning
0 of 20 row(s) selected.
Previous
Next