HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Few Shot Image Classification
Few Shot Image Classification On Mini 1
Few Shot Image Classification On Mini 1
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
MCT
78.55%
Meta-Learned Confidence for Few-shot Learning
BD-CSPN
70.31%
Prototype Rectification for Few-Shot Learning
HyperShot
53.18%
HyperShot: Few-Shot Learning by Kernel HyperNetworks
R2-D2+Task Aug
65.95%
Task Augmentation by Rotating for Meta-Learning
AmdimNet
76.82%
Self-Supervised Learning For Few-Shot Image Classification
MetaOptNet-SVM+Task Aug
65.38%
Task Augmentation by Rotating for Meta-Learning
GCR
53.21
Few-Shot Learning with Global Class Representations
Neg-Margin
63.85
Negative Margin Matters: Understanding Margin in Few-shot Classification
EPNet
77.27%
Embedding Propagation: Smoother Manifold for Few-Shot Classification
PLATIPUS
50.13%
Probabilistic Model-Agnostic Meta-Learning
BaseTransformers (Inductive)
70.88%
BaseTransformers: Attention over base data-points for One Shot Learning
SIB
70.0%
-
-
Multiple-semantics
67.2%
Baby steps towards few-shot learning with multiple semantics
-
PT+MAP
82.92%
Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
DivCoop
63.73%
Diversity with Cooperation: Ensemble Methods for Few-Shot Classification
Transfer+SGC
76.47%
Graph-based Interpolation of Feature Vectors for Accurate Few-Shot Classification
-
0 of 16 row(s) selected.
Previous
Next