HyperAI

Few Shot Image Classification On Cub 200 5

Metriken

Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy
context-aware-meta-learning98.7
laplacian-regularized-few-shot-learning88.68
learning-to-learn-by-self-critique83.8
charting-the-right-manifold-manifold-mixup90.85
easy-ensemble-augmented-shot-y-shaped91.59
revisiting-local-descriptor-based-image-to81.9
deep-kernel-transfer-in-gaussian-processes85.64
the-balanced-pairwise-affinities-feature97.12
hyperbolic-image-embeddings72.22
instance-credibility-inference-for-few-shot92.48
easy-ensemble-augmented-shot-y-shaped93.5
adaptive-dimension-reduction-and-variational93.50
task-discrepancy-maximization-for-fine-193.37
leveraging-the-feature-distribution-in93.99
transductive-information-maximization-for-few90.8
sill-net-feature-augmentation-with-separated96.28
variational-transfer-learning-for-fine91.48
espt-a-self-supervised-episodic-spatial94.02
unsupervised-embedding-adaptation-via-early88.65
transfer-learning-based-few-shot94.09
hypershot-few-shot-learning-by-kernel80.07
negative-margin-matters-understanding-margin89.40
squeezing-backbone-feature-distributions-to96.43
the-self-optimal-transport-feature-transform97.12
learning-embedding-adaptation-for-few-shot83.03
relational-embedding-for-few-shot91.11
learning-to-learn-by-self-critique85.63
easy-ensemble-augmented-shot-y-shaped91.93
exploiting-unsupervised-inputs-for-accurate92.14
self-supervised-learning-for-few-shot-image89.18
mergednet-a-simple-approach-for-one-shot83.42
learning-to-compare-relation-network-for-few65.32