HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Few Shot 3D Point Cloud Classification
Few Shot 3D Point Cloud Classification On 3
Few Shot 3D Point Cloud Classification On 3
Metriken
Overall Accuracy
Standard Deviation
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Overall Accuracy
Standard Deviation
Paper Title
Repository
PCP-MAE
93.5
3.7
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
GPr-Net + Euc (1024)
62.1
1.9
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
Point-BERT
91.0
5.4
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
MaskPoint
91.4
4.0
Masked Discrimination for Self-Supervised Learning on Point Clouds
DGCNN
19.85
6.5
Dynamic Graph CNN for Learning on Point Clouds
Point-M2AE
92.3
4.5
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
GPr-Net + Hyp (1024)
70.4
1.8
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
IDPT
92.8
-
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
PointNet
46.60
13.5
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Point-RAE
93.3
4.0
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
Point-LGMask
92.6
4.3
Point-LGMask: Local and Global Contexts Embedding for Point Cloud Pre-training with Multi-Ratio Masking
ReCon++
94.5
4.1
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
GPr-Net + Euc (512)
62.3
2.0
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
Point-MAE
92.6
4.1
Masked Autoencoders for Point Cloud Self-supervised Learning
PointCNN
46.60
4.8
PointCNN: Convolution On X-Transformed Points
3D-JEPA
94.3
3.6
3D-JEPA: A Joint Embedding Predictive Architecture for 3D Self-Supervised Representation Learning
-
PointGPT
94.3
3.3
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
OcCo+DGCNN
82.9
1.3
Unsupervised Point Cloud Pre-Training via Occlusion Completion
PointNet++
23.05
7.0
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Point-FEMAE
94.0
-
Towards Compact 3D Representations via Point Feature Enhancement Masked Autoencoders
0 of 31 row(s) selected.
Previous
Next