HyperAI

Few Shot 3D Point Cloud Classification On 2

Metriken

Overall Accuracy
Standard Deviation

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameOverall AccuracyStandard Deviation
point2vec-for-self-supervised-representation98.71.2
point-jepa-a-joint-embedding-predictive99.20.8
pre-training-by-completing-point-clouds92.41.6
instance-aware-dynamic-prompt-tuning-for-pre97.9-
pointnet-deep-hierarchical-feature-learning42.3914.2
pcp-mae-learning-to-predict-centers-for-point99.10.8
pointcnn-convolution-on-x-transformed-points68.647.0
regress-before-construct-regress-autoencoder98.71.3
autoencoders-as-cross-modal-teachers-can98.01.4
gpr-net-geometric-prototypical-network-for82.00.9
gpr-net-geometric-prototypical-network-for82.71.3
pointnet-deep-learning-on-point-sets-for-3d57.8115.5
point-lgmask-local-and-global-contexts98.11.4
masked-autoencoders-for-point-cloud-self97.81.8
pre-training-by-completing-point-clouds92.51.9
3d-jepa-a-joint-embedding-predictive98.80.4
masked-discrimination-for-self-supervised97.21.7
self-supervised-few-shot-learning-on-point68.909.4
dynamic-graph-cnn-for-learning-on-point40.814.6
gpr-net-geometric-prototypical-network-for75.12.1
contrast-with-reconstruct-contrastive-3d98.91.2
self-supervised-few-shot-learning-on-point65.708.4
gpr-net-geometric-prototypical-network-for75.02.4
point-m2ae-multi-scale-masked-autoencoders98.31.4
rethinking-masked-representation-learning-for98.71.2
shapellm-universal-3d-object-understanding99.50.8
pointgpt-auto-regressively-generative-pre-199.01.0
point-bert-pre-training-3d-point-cloud96.32.7
crossmoco-multi-modal-momentum-contrastive96.81.7
learning-3d-representations-from-2d-pre98.31.3