HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Face Identification
Face Identification On Megaface
Face Identification On Megaface
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
GhostFaceNetV2-1
98.64%
GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations
CosFace
82.72%
CosFace: Large Margin Cosine Loss for Deep Face Recognition
Cos+UNPG
99.27%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
PartialFC + Glint360K + R100
99.10%
Partial FC: Training 10 Million Identities on a Single Machine
SphereFace (3-patch ensemble)
75.766%
SphereFace: Deep Hypersphere Embedding for Face Recognition
Mag+UNPG
98.03%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
ArcFace + MS1MV2 + R100 + R
98.35%
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Prodpoly
98.78%
Deep Polynomial Neural Networks
FaceNet
70.49%
FaceNet: A Unified Embedding for Face Recognition and Clustering
Light CNN-29
73.749%
A Light CNN for Deep Face Representation with Noisy Labels
SV-AM-Softmax
97.2%
Support Vector Guided Softmax Loss for Face Recognition
SphereFace (single model)
72.729%
SphereFace: Deep Hypersphere Embedding for Face Recognition
Arc+UNPG
98.82%
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
0 of 13 row(s) selected.
Previous
Next