HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Efficient Vits
Efficient Vits On Imagenet 1K With Deit T
Efficient Vits On Imagenet 1K With Deit T
Metriken
GFLOPs
Top 1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
GFLOPs
Top 1 Accuracy
Paper Title
Repository
SPViT (1.0G)
1.0
72.2
SPViT: Enabling Faster Vision Transformers via Soft Token Pruning
LTMP (60%)
0.8
71.5
Learned Thresholds Token Merging and Pruning for Vision Transformers
MCTF ($r=20$)
0.6
71.4
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
PS-ViT
0.7
72.0
Patch Slimming for Efficient Vision Transformers
-
LTMP (45%)
0.7
69.8
Learned Thresholds Token Merging and Pruning for Vision Transformers
ToMe ($r=16$)
0.6
70.7
Token Merging: Your ViT But Faster
DPS-ViT
0.6
72.1
Patch Slimming for Efficient Vision Transformers
-
MCTF ($r=8$)
1.0
72.9
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
BAT
0.8
72.3
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
ToMe ($r=12$)
0.8
71.4
Token Merging: Your ViT But Faster
SPViT (0.9G)
0.9
72.1
SPViT: Enabling Faster Vision Transformers via Soft Token Pruning
S$^2$ViTE
0.9
70.1
Chasing Sparsity in Vision Transformers: An End-to-End Exploration
EvoViT
0.8
72.0
Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer
HVT-Ti-1
0.6
69.6
Scalable Vision Transformers with Hierarchical Pooling
SPViT
1.0
70.7
Pruning Self-attentions into Convolutional Layers in Single Path
Base (DeiT-T)
1.2
72.2
Training data-efficient image transformers & distillation through attention
-
eTPS
0.8
72.3
Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers
MCTF ($r=16$)
0.7
72.7
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
LTMP (80%)
1.0
72.0
Learned Thresholds Token Merging and Pruning for Vision Transformers
PPT
0.8
72.1
PPT: Token Pruning and Pooling for Efficient Vision Transformers
0 of 22 row(s) selected.
Previous
Next