HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Efficient Vits
Efficient Vits On Imagenet 1K With Deit S
Efficient Vits On Imagenet 1K With Deit S
Metriken
GFLOPs
Top 1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
GFLOPs
Top 1 Accuracy
Paper Title
Repository
HVT-S-1
2.7
78.3
Scalable Vision Transformers with Hierarchical Pooling
DynamicViT (70%)
2.9
79.3
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
LTMP (45%)
2.3
78.6
Learned Thresholds Token Merging and Pruning for Vision Transformers
EViT (80%)
3.5
79.8
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
BAT (70%)
3.0
79.6
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
MCTF ($r=18$)
2.4
79.9
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
BAT (60%)
2.6
79.3
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
IA-RED$^2$
3.2
79.1
IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers
-
AS-DeiT-S (50%)
2.3
78.7
Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully Exploiting Self-Attention
-
S$^2$ViTE
3.2
79.2
Chasing Sparsity in Vision Transformers: An End-to-End Exploration
BAT (20%)
1.6
76.4
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
DPS-ViT
2.4
79.5
Patch Slimming for Efficient Vision Transformers
-
LTMP (80%)
3.8
79.8
Learned Thresholds Token Merging and Pruning for Vision Transformers
SPViT
3.3
78.3
Pruning Self-attentions into Convolutional Layers in Single Path
DiffRate
2.9
79.8
DiffRate : Differentiable Compression Rate for Efficient Vision Transformers
AS-DeiT-S (65%)
3.0
79.6
Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully Exploiting Self-Attention
-
Base (DeiT-S)
4.6
79.8
Training data-efficient image transformers & distillation through attention
-
EViT (90%)
4.0
79.8
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
EViT (60%)
2.6
78.9
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
PPT
2.9
79.8
PPT: Token Pruning and Pooling for Efficient Vision Transformers
0 of 41 row(s) selected.
Previous
Next