HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Domainverallgemeinerung
Domain Generalization On Office Home
Domain Generalization On Office Home
Metriken
Average Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average Accuracy
Paper Title
MoA (OpenCLIP, ViT-B/16)
90.6
Domain Generalization Using Large Pretrained Models with Mixture-of-Adapters
PromptStyler (CLIP, ViT-L/14)
89.1
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
UniDG + CORAL + ConvNeXt-B
88.9
Towards Unified and Effective Domain Generalization
SIMPLE+
87.7
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
VL2V-SD (CLIP, ViT-B/16)
87.38
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification
CAR-FT (CLIP, ViT-B/16)
85.7
Context-Aware Robust Fine-Tuning
GMDG (RegNetY-16GF, SWAD)
84.7
Rethinking Multi-domain Generalization with A General Learning Objective
SIMPLE
84.6
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
Ensemble of Averages (RegNetY-16GF)
83.9
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
PromptStyler (CLIP, ViT-B/16)
83.6
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SPG (CLIP, ViT-B/16)
83.6
Soft Prompt Generation for Domain Generalization
MIRO (RegNetY-16GF, SWAD)
83.3
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
D-Triplet(RegNetY-16GF)
82.6
Domain-aware Triplet loss in Domain Generalization
GMDG (RegNetY-16GF)
80.8
Rethinking Multi-domain Generalization with A General Learning Objective
SEDGE+
80.7
Domain Generalization using Pretrained Models without Fine-tuning
Ensemble of Averages (ResNeXt-50 32x4d)
80.2
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
CADG
79.9
CADG: A Model Based on Cross Attention for Domain Generalization
SEDGE
79.9
Domain Generalization using Pretrained Models without Fine-tuning
GMoE-S/16
74.2
Sparse Mixture-of-Experts are Domain Generalizable Learners
SPG (CLIP, ResNet-50)
73.8
Soft Prompt Generation for Domain Generalization
0 of 45 row(s) selected.
Previous
Next
Domain Generalization On Office Home | SOTA | HyperAI