HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Domainverallgemeinerung
Domain Generalization On Imagenet Sketch
Domain Generalization On Imagenet Sketch
Metriken
Top-1 accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 accuracy
Paper Title
Model soups (BASIC-L)
77.18
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Model soups (ViT-G/14)
74.24
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
CAR-FT (CLIP, ViT-L/14@336px)
65.5
Context-Aware Robust Fine-Tuning
ConvNeXt-XL (Im21k, 384)
55.0
A ConvNet for the 2020s
CAFormer-B36 (IN21K, 384)
54.5
MetaFormer Baselines for Vision
LLE (ViT-H/14, MAE, Edge Aug)
53.39
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
ConvFormer-B36 (IN21K, 384)
52.9
MetaFormer Baselines for Vision
CAFormer-B36 (IN21K)
52.8
MetaFormer Baselines for Vision
ConvFormer-B36 (IN21K)
52.7
MetaFormer Baselines for Vision
MAE (ViT-H, 448)
50.9
Masked Autoencoders Are Scalable Vision Learners
MAE+DAT (ViT-H)
50.03
Enhance the Visual Representation via Discrete Adversarial Training
GPaCo (ViT-L)
48.3
Generalized Parametric Contrastive Learning
Discrete Adversarial Distillation (ViT-B, 224)
46.1
Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models
Pyramid Adversarial Training Improves ViT (Im21k)
46.03
Pyramid Adversarial Training Improves ViT Performance
SEER (RegNet10B)
45.6
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
DrViT
44.72
Discrete Representations Strengthen Vision Transformer Robustness
CAFormer-B36
42.5
MetaFormer Baselines for Vision
Pyramid Adversarial Training Improves ViT
41.04
Pyramid Adversarial Training Improves ViT Performance
ConvFormer-B36
39.5
MetaFormer Baselines for Vision
Sequencer2D-L
35.8
Sequencer: Deep LSTM for Image Classification
0 of 20 row(s) selected.
Previous
Next
Domain Generalization On Imagenet Sketch | SOTA | HyperAI