HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Domainverallgemeinerung
Domain Generalization On Imagenet R
Domain Generalization On Imagenet R
Metriken
Top-1 Error Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 Error Rate
Paper Title
Repository
Model soups (ViT-G/14)
4.54
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
GPaCo (ViT-L)
39.7
Generalized Parametric Contrastive Learning
SEER (RegNet10B)
43.9
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
Pyramid Adversarial Training Improves ViT (Im21k)
42.16
Pyramid Adversarial Training Improves ViT Performance
VOLO-D5+HAT
40.3
Improving Vision Transformers by Revisiting High-frequency Components
Stylized ImageNet (ResNet-50)
58.5
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Mixer-B/8-SAM
76.5
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
LLE (ViT-B/16, SWAG, Edge Aug)
31.3
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
Model soups (BASIC-L)
3.90
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
MAE (ViT-H, 448)
33.5
Masked Autoencoders Are Scalable Vision Learners
PRIME with JSD (ResNet-50)
53.7
PRIME: A few primitives can boost robustness to common corruptions
ConvFormer-B36
48.9
MetaFormer Baselines for Vision
CAR-FT (CLIP, ViT-L/14@336px)
10.3
Context-Aware Robust Fine-Tuning
-
ConvFormer-B36 (384)
47.8
MetaFormer Baselines for Vision
ConvNeXt-XL (Im21k, 384)
31.8
A ConvNet for the 2020s
ResNet-152x2-SAM
71.9
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
FAN-Hybrid-L(IN-21K, 384))
28.9
Understanding The Robustness in Vision Transformers
RVT-Ti*
56.1
Towards Robust Vision Transformer
RVT-S*
52.3
Towards Robust Vision Transformer
ConvFormer-B36 (IN21K, 384)
33.5
MetaFormer Baselines for Vision
0 of 39 row(s) selected.
Previous
Next