HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Domainverallgemeinerung
Domain Generalization On Imagenet R
Domain Generalization On Imagenet R
Metriken
Top-1 Error Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 Error Rate
Paper Title
Mixer-B/8-SAM
76.5
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
ViT-B/16-SAM
73.6
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
ResNet-152x2-SAM
71.9
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
ResNet-50
63.9
Deep Residual Learning for Image Recognition
AugMix (ResNet-50)
58.9
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Stylized ImageNet (ResNet-50)
58.5
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
DeepAugment (ResNet-50)
57.8
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
PRIME (ResNet-50)
57.1
PRIME: A few primitives can boost robustness to common corruptions
RVT-Ti*
56.1
Towards Robust Vision Transformer
PRIME with JSD (ResNet-50)
53.7
PRIME: A few primitives can boost robustness to common corruptions
DeepAugment+AugMix (ResNet-50)
53.2
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
RVT-S*
52.3
Towards Robust Vision Transformer
Sequencer2D-L
51.9
Sequencer: Deep LSTM for Image Classification
RVT-B*
51.3
Towards Robust Vision Transformer
ConvFormer-B36
48.9
MetaFormer Baselines for Vision
ConvFormer-B36 (384)
47.8
MetaFormer Baselines for Vision
CAFormer-B36
46.1
MetaFormer Baselines for Vision
Pyramid Adversarial Training Improves ViT
46.08
Pyramid Adversarial Training Improves ViT Performance
CAFormer-B36 (384)
45
MetaFormer Baselines for Vision
DiscreteViT
44.74
Discrete Representations Strengthen Vision Transformer Robustness
0 of 39 row(s) selected.
Previous
Next
Domain Generalization On Imagenet R | SOTA | HyperAI