HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Domainverallgemeinerung
Domain Generalization On Imagenet A
Domain Generalization On Imagenet A
Metriken
Top-1 accuracy %
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 accuracy %
Paper Title
Model soups (BASIC-L)
94.17
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Model soups (ViT-G/14)
92.67
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
µ2Net+ (ViT-L/16)
84.53
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
CAR-FT (CLIP, ViT-L/14@336px)
81.5
Context-Aware Robust Fine-Tuning
CAFormer-B36 (IN-21K, 384)
79.5
MetaFormer Baselines for Vision
MAE (ViT-H, 448)
76.7
Masked Autoencoders Are Scalable Vision Learners
FAN-Hybrid-L(IN-21K, 384)
74.5
Understanding The Robustness in Vision Transformers
ConvFormer-B36 (IN-21K, 384)
73.5
MetaFormer Baselines for Vision
CAFormer-B36 (IN-21K)
69.4
MetaFormer Baselines for Vision
ConvNeXt-XL (Im21k, 384)
69.3
A ConvNet for the 2020s
MAE+DAT (ViT-H)
68.92
Enhance the Visual Representation via Discrete Adversarial Training
ConvFormer-B36 (IN-21K)
63.3
MetaFormer Baselines for Vision
Pyramid Adversarial Training Improves ViT (Im21k)
62.44
Pyramid Adversarial Training Improves ViT Performance
CAFormer-B36 (384)
61.9
MetaFormer Baselines for Vision
TransNeXt-Base (IN-1K supervised, 384)
61.6
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
TransNeXt-Small (IN-1K supervised, 384)
58.3
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
ConvFormer-B36 (384)
55.3
MetaFormer Baselines for Vision
SEER (RegNet10B)
52.7
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
TransNeXt-Base (IN-1K supervised, 224)
50.6
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
CAFormer-B36
48.5
MetaFormer Baselines for Vision
0 of 39 row(s) selected.
Previous
Next
Domain Generalization On Imagenet A | SOTA | HyperAI