HyperAI

Domain Adaptation On Visda2017

Metriken

Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy
conditional-adversarial-domain-adaptation73.7
confidence-regularized-self-training78.1
contrastive-adaptation-network-for87.2
reusing-the-task-specific-classifier-as-a83.7
combining-inherent-knowledge-of-vision92.7
patch-mix-transformer-for-unsupervised-domain88.8
fixbi-bridging-domain-spaces-for-unsupervised87.2
sentry-selective-entropy-optimization-via76.7
deep-transfer-learning-with-joint-adaptation58.3
sf-da-2-source-free-domain-adaptation-through89.6
source-free-domain-adaptation-via-avatar86.0
self-ensembling-for-visual-domain-adaptation85.4
deepjdot-deep-joint-distribution-optimal66.9
contrastive-vicinal-space-for-unsupervised88.5
visual-prompt-tuning-for-test-time-domain90.7
cdtrans-cross-domain-transformer-for88.4
sf-da-2-source-free-domain-adaptation-through88.1
d-sne-domain-adaptation-using-stochastic86.15
mic-masked-image-consistency-for-context92.8
empowering-source-free-domain-adaptation-with93.2
unsupervised-domain-adaption-harnessing91.8
feature-fusion-transferability-aware93.8
drop-to-adapt-learning-discriminative81.5
do-we-really-need-to-access-the-source-data82.9
a-closer-look-at-smoothness-in-domain-189.8
sliced-wasserstein-discrepancy-for76.4
unsupervised-domain-adaptation-an-adaptive76.1
confidence-regularized-self-training78.1