HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Domain-Anpassung
Domain Adaptation On Svhn To Mnist
Domain Adaptation On Svhn To Mnist
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Mean teacher
99.18
Self-ensembling for visual domain adaptation
DFA-MCD
98.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
SHOT
98.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
FAMCD
98.76
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
DFA-ENT
98.2
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
CyCleGAN (Light-weight Calibrator)
97.5
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
MCD
95.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
PFA
93.9
Progressive Feature Alignment for Unsupervised Domain Adaptation
MSTN
93.3
Learning Semantic Representations for Unsupervised Domain Adaptation
FACT
90.6
FACT: Federated Adversarial Cross Training
CYCADA
90.4
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CDAN
89.2
Conditional Adversarial Domain Adaptation
ADDN
80.1
Adversarial Discriminative Domain Adaptation
SBADA
76.1
From source to target and back: symmetric bi-directional adaptive GAN
0 of 14 row(s) selected.
Previous
Next
Domain Adaptation On Svhn To Mnist | SOTA | HyperAI