HyperAI

Domain Adaptation On Gta5 To Cityscapes

Metriken

mIoU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamemIoU
pipa-pixel-and-patch-wise-self-supervised75.6
daformer-improving-network-architectures-and68.3
prototypical-pseudo-label-denoising-and57.5
smoothing-matters-momentum-transformer-for63.9
fredom-fairness-domain-adaptation-approach-to73.6
iterative-loop-learning-combining-self76.1
mic-masked-image-consistency-for-context75.9
a-novel-unsupervised-domain-adaption-method58.8
sepico-semantic-guided-pixel-contrast-for70.3
hyperbolic-active-learning-for-semantic77.8
cross-region-domain-adaptation-for-class58.6
fredom-fairness-domain-adaptation-approach-to61.3
transferring-to-real-world-layouts-a-depth77.7
generalize-then-adapt-source-free-domain53.4
procst-boosting-semantic-segmentation-using69.4
bidirectional-self-training-with-multiple61.2
g2l-a-global-to-local-alignment-method-for59.7
unsupervised-scene-adaptation-with-memory48.3
exploring-high-quality-target-domain62.0
rectifying-pseudo-label-learning-via50.3
hrda-context-aware-high-resolution-domain73.8
improve-cross-domain-mixed-sampling-with67.0
deliberated-domain-bridging-for-domain62.7
prototypical-contrast-adaptation-for-domain56.3
content-consistent-matching-for-domain49.9
adaptive-boosting-for-domain-adaptation49.0