HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Domain Adaptation
Domain Adaptation On Gta5 To Cityscapes
Domain Adaptation On Gta5 To Cityscapes
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
Repository
HRDA+PiPa
75.6
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
DAFormer
68.3
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
ProDA
57.5
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
TransDA-B
63.9
Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation
FREDOM - Transformer
73.6
FREDOM: Fairness Domain Adaptation Approach to Semantic Scene Understanding
ILM-ASSL
76.1
Iterative Loop Method Combining Active and Semi-Supervised Learning for Domain Adaptive Semantic Segmentation
MIC
75.9
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
FAFS
58.8
A Novel Unsupervised Domain Adaption Method for Depth-Guided Semantic Segmentation Using Coarse-to-Fine Alignment
-
SePiCo
70.3
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
-
HALO
77.8
Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
ProDA+CRA
58.6
Cross-Region Domain Adaptation for Class-level Alignment
-
FREDOM - DeepLabV2
61.3
FREDOM: Fairness Domain Adaptation Approach to Semantic Scene Understanding
DCF
77.7
Transferring to Real-World Layouts: A Depth-aware Framework for Scene Adaptation
GtA-SFDA (DeepLabv2-ResNet101)
53.4
Generalize then Adapt: Source-Free Domain Adaptive Semantic Segmentation
DAFormer + ProCST
69.4
ProCST: Boosting Semantic Segmentation Using Progressive Cyclic Style-Transfer
BiSMAP
61.2
Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation
G2L
59.7
G2L: A Global to Local Alignment Method for Unsupervised Domain Adaptive Semantic Segmentation
-
MRNet
48.3
Unsupervised Scene Adaptation with Memory Regularization in vivo
EHTDI*
62.0
Exploring High-quality Target Domain Information for Unsupervised Domain Adaptive Semantic Segmentation
MRNet + Rectifying Label
50.3
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
0 of 26 row(s) selected.
Previous
Next