Dichotomous Image Segmentation On Dis Te2
Metriken
E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | E-measure | HCE | MAE | S-Measure | max F-Measure | weighted F-measure |
---|---|---|---|---|---|---|
u-2-net-going-deeper-with-nested-u-structure | 0.833 | 490 | 0.085 | 0.788 | 0.756 | 0.668 |
highly-accurate-dichotomous-image | 0.858 | 340 | 0.07 | 0.823 | 0.799 | 0.728 |
basnet-boundary-aware-salient-object | 0.836 | 480 | 0.084 | 0.786 | 0.755 | 0.668 |
searching-for-mobilenetv3 | 0.856 | 600 | 0.083 | 0.777 | 0.743 | 0.672 |
suppress-and-balance-a-simple-gated-network | 0.804 | 501 | 0.102 | 0.737 | 0.702 | 0.598 |
bilateral-reference-for-high-resolution | 0.935 | 265 | 0.035 | 0.904 | 0.898 | 0.863 |
pyramid-scene-parsing-network | 0.828 | 586 | 0.092 | 0.763 | 0.724 | 0.636 |
rethinking-atrous-convolution-for-semantic | 0.813 | 516 | 0.105 | 0.729 | 0.681 | 0.587 |
icnet-for-real-time-semantic-segmentation-on | 0.826 | 512 | 0.095 | 0.759 | 0.716 | 0.627 |
global-context-aware-progressive-aggregation | 0.786 | 574 | 0.109 | 0.735 | 0.673 | 0.570 |
revisiting-image-pyramid-structure-for-high | - | 255 | - | 0.905 | 0.894 | - |
f3net-fusion-feedback-and-focus-for-salient | 0.820 | 542 | 0.097 | 0.755 | 0.712 | 0.620 |
multi-view-aggregation-network-for | 0.944 | 251 | 0.030 | 0.915 | 0.916 | 0.874 |
patch-depth-fusion-dichotomous-image | 0.947 | - | 0.028 | 0.924 | 0.921 | 0.885 |
190807919 | 0.840 | 555 | 0.087 | 0.784 | 0.747 | 0.664 |
rethinking-bisenet-for-real-time-semantic | 0.834 | 556 | 0.092 | 0.759 | 0.720 | 0.636 |
bisenet-bilateral-segmentation-network-for | 0.781 | 621 | 0.111 | 0.740 | 0.680 | 0.564 |
concealed-object-detection | 0.823 | 593 | 0.099 | 0.753 | 0.700 | 0.618 |
revisiting-image-pyramid-structure-for-high | 0.925 | 316 | 0.038 | 0.893 | 0.881 | 0.834 |
hyperseg-patch-wise-hypernetwork-for-real | 0.832 | 451 | 0.085 | 0.794 | 0.759 | 0.667 |
camouflaged-object-segmentation-with | 0.829 | 567 | 0.096 | 0.761 | 0.720 | 0.633 |
u-net-convolutional-networks-for-biomedical | - | 474 | 0.107 | 0.755 | 0.703 | 0.597 |