HyperAI

Depth Estimation On Stanford2D3D Panoramic

Metriken

RMSE
absolute relative error

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
RMSE
absolute relative error
Paper TitleRepository
PanoDepth0.37470.0972PanoDepth: A Two-Stage Approach for Monocular Omnidirectional Depth Estimation-
GLPanoDepth0.3493-GLPanoDepth: Global-to-Local Panoramic Depth Estimation
HiMODE0.26190.0532HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model-
HoHoNet (ResNet-101)0.38340.1014HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features
FreDSNet0.27270.0952FreDSNet: Joint Monocular Depth and Semantic Segmentation with Fast Fourier Convolutions
UniFuse with fusion0.36910.1114UniFuse: Unidirectional Fusion for 360$^{circ}$ Panorama Depth Estimation
Jin et al.0.421-Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery-
OmniDepth0.61520.1996 OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas
BiFuse with fusion0.41420.1209BiFuse: Monocular 360 Depth Estimation via Bi-Projection Fusion
Neural Contourlet Network0.35280.0558Neural Contourlet Network for Monocular 360 Depth Estimation
SliceNet0.36840.0744SliceNet: Deep Dense Depth Estimation From a Single Indoor Panorama Using a Slice-Based Representation-
PanoFormer0.30830.0405PanoFormer: Panorama Transformer for Indoor 360 Depth Estimation
DisConv0.3690.176Distortion-Aware Convolutional Filters for Dense Prediction in Panoramic Images-
NLFB0.27760.0649Improving 360 Monocular Depth Estimation via Non-local Dense Prediction Transformer and Joint Supervised and Self-supervised Learning
OmniFusion (2-iter)0.34740.095OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
ACDNet0.3410.0984ACDNet: Adaptively Combined Dilated Convolution for Monocular Panorama Depth Estimation
BiFuse++0.3720.1117BiFuse++: Self-supervised and Efficient Bi-projection Fusion for 360 Depth Estimation
SphereDepth0.45120.1158SphereDepth: Panorama Depth Estimation from Spherical Domain-
0 of 18 row(s) selected.