HyperAI

Depth Estimation On Stanford2D3D Panoramic

Metriken

RMSE
absolute relative error

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameRMSEabsolute relative error
panodepth-a-two-stage-approach-for-monocular0.37470.0972
glpanodepth-global-to-local-panoramic-depth0.3493-
himode-a-hybrid-monocular-omnidirectional0.26190.0532
hohonet-360-indoor-holistic-understanding0.38340.1014
fredsnet-joint-monocular-depth-and-semantic0.27270.0952
unifuse-unidirectional-fusion-for-360-circ0.36910.1114
geometric-structure-based-and-regularized0.421-
omnidepth-dense-depth-estimation-for-indoors0.61520.1996
bifuse-monocular-360-depth-estimation-via-bi0.41420.1209
neural-contourlet-network-for-monocular-3600.35280.0558
slicenet-deep-dense-depth-estimation-from-a0.36840.0744
panoformer-panorama-transformer-for-indoor0.30830.0405
distortion-aware-convolutional-filters-for0.3690.176
improving-360-monocular-depth-estimation-via0.27760.0649
omnifusion-360-monocular-depth-estimation-via0.34740.095
acdnet-adaptively-combined-dilated0.3410.0984
bifuse-self-supervised-and-efficient-bi0.3720.1117
spheredepth-panorama-depth-estimation-from0.45120.1158