HyperAI

Depth Estimation On Nyu Depth V2

Metriken

RMS

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
RMS
Paper TitleRepository
Freeform0.433Deep Optics for Monocular Depth Estimation and 3D Object Detection-
P3Depth0.356P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior
PAD-Net0.792PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing-
EVP0.224EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature Refinement and Regularized Image-Text Alignment
Optimized, freeform0.4325Deep Optics for Monocular Depth Estimation and 3D Object Detection-
Defocus/DepthNet (Normalized)-Focus on defocus: bridging the synthetic to real domain gap for depth estimation-
TransDepth (AGD+ ViT)0.365Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction
DINOv2 (ViT-g/14 frozen, w/ DPT decoder)0.279DINOv2: Learning Robust Visual Features without Supervision
AdaBins0.364AdaBins: Depth Estimation using Adaptive Bins
VNL0.416Enforcing geometric constraints of virtual normal for depth prediction
SwinV2-B 1K-MIM0.304Revealing the Dark Secrets of Masked Image Modeling
Semantic-aware NN0.303D Ken Burns Effect from a Single Image
DORN0.509Deep Ordinal Regression Network for Monocular Depth Estimation
SwinV2-L 1K-MIM0.287Revealing the Dark Secrets of Masked Image Modeling
A2J-A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image
MS-CRF0.586Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation
BTS0.407From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
0 of 17 row(s) selected.