Deblurring On Gopro
Metriken
PSNR
SSIM
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | PSNR | SSIM |
---|---|---|
spatio-temporal-filter-adaptive-network-for | 28.59 | 0.861 |
spatially-attentive-patch-hierarchical | 32.02 | 0.953 |
rethinking-coarse-to-fine-approach-in-single | 32.68 | 0.959 |
vrt-a-video-restoration-transformer | 34.81 | 0.9724 |
ghost-deblurgan-and-its-application-to | 28.75 | 0.919 |
flow-guided-sparse-transformer-for-video | 33.03 | 0.964 |
motion-aware-double-attention-network-for | 33.84 | 0.964 |
deblurgan-v2-deblurring-orders-of-magnitude | 29.55 | 0.934 |
deblurgan-v2-deblurring-orders-of-magnitude | 28.17 | 0.925 |
deep-recurrent-neural-network-with-multi | 33.32 | 0.9627 |
mssnet-multi-scale-stage-network-for-single | 32.02 | 0.953 |
deep-multi-scale-convolutional-neural-network | 29.08 | 0.9135 |
cascaded-deep-video-deblurring-using-temporal | 31.67 | 0.9279 |
stripformer-strip-transformer-for-fast-image | 33.08 | 0.962 |
revisiting-global-statistics-aggregation-for | 33.57 | 0.966 |
id-blau-image-deblurring-by-implicit | 33.51 | 0.965 |
banet-blur-aware-attention-networks-for | 32.54 | 0.957 |
revisiting-global-statistics-aggregation-for | 33.08 | 0.962 |
efficient-spatio-temporal-recurrent-neural-1 | 31.07 | 0.9023 |
bringing-alive-blurred-moments | 30.58 | 0.941 |
multi-stage-progressive-image-restoration | 32.66 | 0.959 |
deblurring-by-realistic-blurring | 31.10 | 0.9424 |
unsupervised-flow-aligned-sequence-to | 31.82 | 0.923 |
id-blau-image-deblurring-by-implicit | 34.36 | 0.970 |
revisiting-global-statistics-aggregation-for | 33.31 | 0.964 |
revisiting-global-statistics-aggregation-for | 33.8 | 0.966 |
scale-recurrent-network-for-deep-image | - | 0.9342 |
deblurdinat-a-lightweight-and-effective | 33.63 | 0.967 |
learning-event-based-motion-deblurring | 31.79 | 0.949 |
neural-image-re-exposure | 35.03 | 0.973 |
mefnet-multi-scale-event-fusion-network-for | 35.46 | 0.972 |
mssnet-multi-scale-stage-network-for-single | 33.01 | 0.961 |
efficient-multi-scale-network-with-learnable | 33.83 | 0.968 |
dynamic-scene-deblurring-with-parameter | 31.58 | 0.9478 |
simple-baselines-for-image-restoration | 33.69 | 0.967 |
deblurgan-v2-deblurring-orders-of-magnitude | 28.03 | 0.922 |
dark-and-bright-channel-prior-embedded | 31.10 | 0.945 |
adarevd-adaptive-patch-exiting-reversible-1 | 34.6 | 0.972 |
mssnet-multi-scale-stage-network-for-single | 33.39 | 0.964 |
hinet-half-instance-normalization-network-for | 32.71 | - |
deep-residual-fourier-transformation-for | 33.52 | 0.965 |
learning-truncated-causal-history-model-for | 34.5 | 0.972 |
multi-temporal-recurrent-neural-networks-for | 31.15 | 0.945 |
restormer-efficient-transformer-for-high | 32.92 | 0.961 |
selective-frequency-network-for-image | 33.27 | 0.963 |
no-attention-is-needed-grouped-spatial | 35.88 | 0.979 |
id-blau-image-deblurring-by-implicit | 33.66 | 0.966 |
blur-more-to-deblur-better-multi-blur2deblur | 32.16 | 0.953 |
deep-stacked-hierarchical-multi-patch-network | 31.50 | 0.9483 |
maxim-multi-axis-mlp-for-image-processing | 32.86 | - |
blur-aware-spatio-temporal-sparse-transformer | 35.98 | 0.9792 |
spatially-adaptive-residual-networks-for | 32.15 | 0.9560 |
uformer-a-general-u-shaped-transformer-for | 32.97 | 0.967 |
spatio-temporal-deformable-attention-network | 32.29 | 0.9313 |
deformable-convolutions-and-lstm-based | 35.61 | 0.973 |