HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Menschenzählung
Crowd Counting On Worldexpo10
Crowd Counting On Worldexpo10
Metriken
Average MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average MAE
Paper Title
Zhang et al.
12.9
Cross-Scene Crowd Counting via Deep Convolutional Neural Networks
MCNN
11.6
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
IG-CNN
11.3
Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN
ic-CNN
10.3
Iterative Crowd Counting
Switch-CNN
9.4
Switching Convolutional Neural Network for Crowd Counting
DecideNet
9.23
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
D-ConvNet
9.1
Crowd Counting With Deep Negative Correlation Learning
CP-CNN
8.9
Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs
CSRNet
8.6
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
SANet
8.2
Scale Aggregation Network for Accurate and Efficient Crowd Counting
SPANet
7.7
Learning Spatial Awareness to Improve Crowd Counting
ACSCP
7.5
Crowd Counting via Adversarial Cross-Scale Consistency Pursuit
CAN
7.4
Context-Aware Crowd Counting
M-SFANet
7.32
Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting
ECAN
7.2
Context-Aware Crowd Counting
0 of 15 row(s) selected.
Previous
Next
Crowd Counting On Worldexpo10 | SOTA | HyperAI