HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Menschenzählung
Crowd Counting On Shanghaitech A
Crowd Counting On Shanghaitech A
Metriken
MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
MAE
Paper Title
Zhang et al.
181.8
Cross-Scene Crowd Counting via Deep Convolutional Neural Networks
MCNN
110.2
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
Cascaded-MTL
101.3
CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting
Switch-CNN
90.4
Switching Convolutional Neural Network for Crowd Counting
ACSCP
75.7
Crowd Counting via Adversarial Cross-Scale Consistency Pursuit
SAFECount
73.70
Few-shot Object Counting with Similarity-Aware Feature Enhancement
CP-CNN
73.6
Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs
Liu et al.
73.6
Leveraging Unlabeled Data for Crowd Counting by Learning to Rank
D-ConvNet
73.5
Crowd Counting With Deep Negative Correlation Learning
IG-CNN
72.5
Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN
ic-CNN
68.5
Iterative Crowd Counting
CSRNet
68.2
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
SANet
67.0
Scale Aggregation Network for Accurate and Efficient Crowd Counting
LSC-CNN
66.4
Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection
CSRNet-EBC
66.3
CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification
OrdinalEntropy
65.6
Improving Deep Regression with Ordinal Entropy
CAN
62.3
Context-Aware Crowd Counting
DMCount-EBC
62.3
CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification
FusionCount
62.2
FusionCount: Efficient Crowd Counting via Multiscale Feature Fusion
DM-Count
59.7
Distribution Matching for Crowd Counting
0 of 34 row(s) selected.
Previous
Next