HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Konstituenzanalyse
Constituency Parsing On Penn Treebank
Constituency Parsing On Penn Treebank
Metriken
F1 score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F1 score
Paper Title
Hashing + XLNet
96.43
To be Continuous, or to be Discrete, Those are Bits of Questions
SAPar + XLNet
96.40
Improving Constituency Parsing with Span Attention
Label Attention Layer + HPSG + XLNet
96.38
Rethinking Self-Attention: Towards Interpretability in Neural Parsing
Attach-Juxtapose Parser + XLNet
96.34
Strongly Incremental Constituency Parsing with Graph Neural Networks
Head-Driven Phrase Structure Grammar Parsing (Joint) + XLNet
96.33
Head-Driven Phrase Structure Grammar Parsing on Penn Treebank
CRF Parser + RoBERTa
96.32
Fast and Accurate Neural CRF Constituency Parsing
Hashing + Bert
96.03
To be Continuous, or to be Discrete, Those are Bits of Questions
NFC + BERT-large
95.92
Investigating Non-local Features for Neural Constituency Parsing
N-ary semi-markov + BERT-large
95.92
N-ary Constituent Tree Parsing with Recursive Semi-Markov Model
Head-Driven Phrase Structure Grammar Parsing (Joint) + BERT
95.84
Head-Driven Phrase Structure Grammar Parsing on Penn Treebank
CRF Parser + BERT
95.69
Fast and Accurate Neural CRF Constituency Parsing
CNN Large + fine-tune
95.6
Cloze-driven Pretraining of Self-attention Networks
SpanRel
95.5
Generalizing Natural Language Analysis through Span-relation Representations
Tetra Tagging
95.44
Tetra-Tagging: Word-Synchronous Parsing with Linear-Time Inference
Self-attentive encoder + ELMo
95.13
Constituency Parsing with a Self-Attentive Encoder
Model combination
94.66
Improving Neural Parsing by Disentangling Model Combination and Reranking Effects
LSTM Encoder-Decoder + LSTM-LM
94.47
Direct Output Connection for a High-Rank Language Model
LSTM Encoder-Decoder + LSTM-LM
94.32
An Empirical Study of Building a Strong Baseline for Constituency Parsing
In-order
94.2
In-Order Transition-based Constituent Parsing
CRF Parser
94.12
Fast and Accurate Neural CRF Constituency Parsing
0 of 27 row(s) selected.
Previous
Next
Constituency Parsing On Penn Treebank | SOTA | HyperAI