HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Alltagswissen
Common Sense Reasoning On Record
Common Sense Reasoning On Record
Metriken
EM
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
EM
F1
Paper Title
Turing NLR v5 XXL 5.4B (fine-tuned)
95.9
96.4
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
ST-MoE-32B 269B (fine-tuned)
95.1
-
ST-MoE: Designing Stable and Transferable Sparse Expert Models
DeBERTa-1.5B
94.1
94.5
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
PaLM 540B (finetuned)
94.0
94.6
PaLM: Scaling Language Modeling with Pathways
Vega v2 6B (fine-tuned)
93.9
94.4
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
T5-XXL 11B (fine-tuned)
93.4
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
GESA 500M
91.7
92.2
Integrating a Heterogeneous Graph with Entity-aware Self-attention using Relative Position Labels for Reading Comprehension Model
LUKE-Graph
91.2
91.5
LUKE-Graph: A Transformer-based Approach with Gated Relational Graph Attention for Cloze-style Reading Comprehension
LUKE (single model)
90.640
91.209
-
LUKE 483M
90.6
91.2
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
KELM (finetuning RoBERTa-large based single model)
89.1
89.6
KELM: Knowledge Enhanced Pre-Trained Language Representations with Message Passing on Hierarchical Relational Graphs
ST-MoE-L 4.1B (fine-tuned)
88.9
-
ST-MoE: Designing Stable and Transferable Sparse Expert Models
FLAN 137B (prompt-tuned)
85.1
-
Finetuned Language Models Are Zero-Shot Learners
XLNet + MTL + Verifier (ensemble)
83.090
83.737
-
GPT-3 Large 760M (0-shot)
82.1
-
Language Models are Few-Shot Learners
CSRLM (single model)
81.780
82.584
-
XLNet + Verifier
81.5
82.7
Pingan Smart Health and SJTU at COIN - Shared Task: utilizing Pre-trained Language Models and Common-sense Knowledge in Machine Reading Tasks
XLNet + MTL + Verifier (single model)
81.460
82.664
-
Switch Transformer 9B
79.9
-
Efficient Language Modeling with Sparse all-MLP
{SKG-NET} (single model)
79.480
80.038
-
0 of 45 row(s) selected.
Previous
Next
Common Sense Reasoning On Record | SOTA | HyperAI