HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Codegenerierung
Code Generation On Wikisql
Code Generation On Wikisql
Metriken
Exact Match Accuracy
Execution Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Exact Match Accuracy
Execution Accuracy
Paper Title
NL2SQL-RULE
83.7
89.2
Content Enhanced BERT-based Text-to-SQL Generation
TypeSQL+TC (Yu et al., 2018)+
-
82.6
TypeSQL: Knowledge-based Type-Aware Neural Text-to-SQL Generation
Tranx
68.6
78.6
TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
STAMP+RL (Sun et al., 2018)+
61.0
74.6
Semantic Parsing with Syntax- and Table-Aware SQL Generation
STAMP (Sun et al., 2018)+
60.7
74.4
Semantic Parsing with Syntax- and Table-Aware SQL Generation
TypeSQL (Yu et al., 2018)
-
73.5
TypeSQL: Knowledge-based Type-Aware Neural Text-to-SQL Generation
PT-MAML (Huang et al., 2018)
62.8
68.0
Natural Language to Structured Query Generation via Meta-Learning
Bidirectional Attention for SQL Generation
69
62.5
Bidirectional Attention for SQL Generation
Seq2SQL (Zhong et al., 2017)
48.3
59.4
Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning
Seq2Seq (Zhong et al., 2017)
23.4
35.9
Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning
0 of 10 row(s) selected.
Previous
Next
Code Generation On Wikisql | SOTA | HyperAI