HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Codegenerierung
Code Generation On Django
Code Generation On Django
Metriken
Accuracy
BLEU Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
BLEU Score
Paper Title
Repository
LUKEMarian
78.50
89.34
Leveraging pre-trained language models for code generation
-
Reranker
80.2
-
Reranking for Neural Semantic Parsing
-
MarianCG
81.83
90.41
MarianCG: a code generation transformer model inspired by machine translation
-
lpn (Ling et al., 2016)
62.3
77.6
Latent Predictor Networks for Code Generation
RoBERTaMarian
77.95
88.91
Leveraging pre-trained language models for code generation
-
Tranx
73.7
-
TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
BERTMarian
76.68
56.55
Leveraging pre-trained language models for code generation
-
BERT + TAE
81.03
-
Code Generation from Natural Language with Less Prior and More Monolingual Data
TranX + BERT w/mined
81.03
79.86
The impact of lexical and grammatical processing on generating code from natural language
Phrasal Statistical MT (Ling et al., 2016)
31.5
47.6
Latent Predictor Networks for Code Generation
ELECTRAMarian
65.32
53.02
Leveraging pre-trained language models for code generation
-
0 of 11 row(s) selected.
Previous
Next