Click Through Rate Prediction On Movielens 1M
Metriken
AUC
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | AUC | Accuracy | Paper Title | Repository |
---|---|---|---|---|
RippleNet | 0.921 | 84.4 | RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems | |
AutoInt | 0.846 | - | AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks | |
MKR | 0.917 | 84.3 | Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation | |
KNI | 0.9449 | - | An End-to-End Neighborhood-based Interaction Model for Knowledge-enhanced Recommendation | |
STEC | 0.9712 | - | STEC: See-Through Transformer-based Encoder for CTR Prediction | - |
DCNv3 | 0.9074 | - | DCNv3: Towards Next Generation Deep Cross Network for CTR Prediction | - |
0 of 6 row(s) selected.