HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Click Through Rate Prediction
Click Through Rate Prediction On Kkbox
Click Through Rate Prediction On Kkbox
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Paper Title
Repository
AutoInt+
0.8534
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
xDeepFM
0.8535
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
DCNv3
0.8557
DCNv3: Towards Next Generation Deep Cross Network for CTR Prediction
-
DeepFM
0.8531
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepIM
0.8537
Deep Interaction Machine: A Simple but Effective Model for High-order Feature Interactions
DCNv2
0.8531
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
0 of 6 row(s) selected.
Previous
Next