HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Klickratevorhersage
Click Through Rate Prediction On Criteo
Click Through Rate Prediction On Criteo
Metriken
AUC
Log Loss
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Log Loss
Paper Title
Repository
IPNN
0.7972
0.45323
Product-based Neural Networks for User Response Prediction
-
OptFS
0.8116
0.4401
Optimizing Feature Set for Click-Through Rate Prediction
-
DCN V2
0.8115
0.4406
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
-
FiBiNet++
0.8110
-
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction
-
GDCN
0.8161
0.4360
Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction
-
xDeepFM
0.8052
0.4418
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
-
TFNet
0.7991
-
TFNet: Multi-Semantic Feature Interaction for CTR Prediction
-
CETN
0.8148
0.4373
CETN: Contrast-enhanced Through Network for CTR Prediction
-
FNN
0.7963
0.45738
Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
-
FiBiNET
0.8103
0.4423
-
-
MemoNet
0.8152
-
MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction
-
AutoDeepFM(3rd)
0.8010
0.5405
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
-
Wide&Deep
0.7981
0.46772
Wide & Deep Learning for Recommender Systems
-
Fi-GNN
0.8062
0.4453
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
-
DeepFM
0.8007
0.45083
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
-
DeepLight
0.8123
0.4395
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
-
OptInter
0.8101
0.4417
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
-
XCrossNet
0.8067
-
XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
-
TF4CTR
0.8150
-
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation
-
NormDNN
0.8107
-
Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction
-
0 of 38 row(s) selected.
Previous
Next
Click Through Rate Prediction On Criteo | SOTA | HyperAI