HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Click Through Rate Prediction
Click Through Rate Prediction On Criteo
Click Through Rate Prediction On Criteo
Metriken
AUC
Log Loss
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Log Loss
Paper Title
Repository
IPNN
0.7972
0.45323
Product-based Neural Networks for User Response Prediction
OptFS
0.8116
0.4401
Optimizing Feature Set for Click-Through Rate Prediction
DCN V2
0.8115
0.4406
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
FiBiNet++
0.8110
-
FiBiNet++: Reducing Model Size by Low Rank Feature Interaction Layer for CTR Prediction
GDCN
0.8161
0.4360
Towards Deeper, Lighter and Interpretable Cross Network for CTR Prediction
xDeepFM
0.8052
0.4418
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
TFNet
0.7991
-
TFNet: Multi-Semantic Feature Interaction for CTR Prediction
-
CETN
0.8148
0.4373
CETN: Contrast-enhanced Through Network for CTR Prediction
FNN
0.7963
0.45738
Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction
FiBiNET
0.8103
0.4423
FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
MemoNet
0.8152
-
MemoNet: Memorizing All Cross Features' Representations Efficiently via Multi-Hash Codebook Network for CTR Prediction
AutoDeepFM(3rd)
0.8010
0.5405
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
Wide&Deep
0.7981
0.46772
Wide & Deep Learning for Recommender Systems
Fi-GNN
0.8062
0.4453
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
DeepFM
0.8007
0.45083
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepLight
0.8123
0.4395
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
OptInter
0.8101
0.4417
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
XCrossNet
0.8067
-
XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
TF4CTR
0.8150
-
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation
NormDNN
0.8107
-
Correct Normalization Matters: Understanding the Effect of Normalization On Deep Neural Network Models For Click-Through Rate Prediction
0 of 38 row(s) selected.
Previous
Next