HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Click Through Rate Prediction
Click Through Rate Prediction On Avazu
Click Through Rate Prediction On Avazu
Metriken
AUC
LogLoss
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
LogLoss
Paper Title
Repository
OptEmbed
0.7902
0.374
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
Sparse Deep FwFM
0.7897
0.3748
DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
DCNv3
0.7970
0.3695
DCNv3: Towards Next Generation Deep Cross Network for CTR Prediction
-
Fi-GNN
0.7762
0.3825
Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction
FGCNN+IPNN
0.7883
0.3746
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
FinalMLP + MMBAttn
0.7666
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
FLEN
0.75
-
FLEN: Leveraging Field for Scalable CTR Prediction
CELS
0.8001
0.3678
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
DNN + MMBAttn
0.765
-
MMBAttn: Max-Mean and Bit-wise Attention for CTR Prediction
-
OptInter
0.8062
0.3637
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
AutoInt
0.7752
0.3823
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
CETN
0.7962
-
CETN: Contrast-enhanced Through Network for CTR Prediction
AFN+
0.7555
-
Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions
OptInter-M
0.8060
0.3638
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
OptFS
0.795
0.3709
Optimizing Feature Set for Click-Through Rate Prediction
0 of 15 row(s) selected.
Previous
Next