HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Change Detection
Change Detection On S2Looking
Change Detection On S2Looking
Metriken
F1
F1-Score
IoU
KC
OA
Precision
Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F1
F1-Score
IoU
KC
OA
Precision
Recall
Paper Title
Repository
HCGMNet
63.87
63.87
46.91
63.48
99.22
72.51
57.06
HCGMNET: A Hierarchical Change Guiding Map Network For Change Detection
BD-MSA
-
64.08
47.14
-
-
-
-
BD-MSA: Body decouple VHR Remote Sensing Image Change Detection method guided by multi-scale feature information aggregation
-
LSKNet-S
-
67.52
50.96
-
-
71.90
63.64
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
CGNet
-
64.33
47.41
63.93
99.20
70.18
59.38
Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery
Changer (Ex, ResNet-18)
-
66.20
-
-
-
-
-
Changer: Feature Interaction is What You Need for Change Detection
HANet
58.54
58.54
41.38
58.05
99.04
61.38
55.94
HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images
ChangeStar(1x96, MiT-b1, Changen-90k)
-
67.9
-
-
-
-
-
Scalable Multi-Temporal Remote Sensing Change Data Generation via Simulating Stochastic Change Process
ChangeStar(1x96, ResNet-18, Changen-90k)
-
67.1
-
-
-
-
-
Scalable Multi-Temporal Remote Sensing Change Data Generation via Simulating Stochastic Change Process
C2FNet
62.83
62.83
45.80
62.44
99.22
74.84
54.14
C2F-SemiCD: A Coarse-to-Fine Semi-Supervised Change Detection Method Based on Consistency Regularization in High-Resolution Remote Sensing Images
0 of 9 row(s) selected.
Previous
Next