HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Breast Tumour Classification
Breast Tumour Classification On Pcam
Breast Tumour Classification On Pcam
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
Virchow
0.933
Virchow: A Million-Slide Digital Pathology Foundation Model
Steerable G-CNN (e)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
VF-CNN (C8)
-
Rotation equivariant vector field networks
ResNet-34 (e)
-
Deep Residual Learning for Image Recognition
G-CNN (C4)
-
Group Equivariant Convolutional Networks
DenseNet-121 (e)
-
Densely Connected Convolutional Networks
G-CNN (C8)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
VF-CNN (C12)
-
Rotation equivariant vector field networks
VF-CNN (C4)
-
Rotation equivariant vector field networks
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
ResNet-50 (e)
-
Deep Residual Learning for Image Recognition
p4m-DenseNet (D4)
-
Rotation Equivariant CNNs for Digital Pathology
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
Steerable G-CNN (C12)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
G-CNN (C12)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
DSF-CNN (C8)
-
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images
0 of 16 row(s) selected.
Previous
Next