HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Brusttumor-Klassifikation
Breast Tumour Classification On Pcam
Breast Tumour Classification On Pcam
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
Virchow
0.933
Virchow: A Million-Slide Digital Pathology Foundation Model
Steerable G-CNN (e)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
VF-CNN (C8)
-
Rotation equivariant vector field networks
ResNet-34 (e)
-
Deep Residual Learning for Image Recognition
G-CNN (C4)
-
Group Equivariant Convolutional Networks
DenseNet-121 (e)
-
Densely Connected Convolutional Networks
G-CNN (C8)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
VF-CNN (C12)
-
Rotation equivariant vector field networks
VF-CNN (C4)
-
Rotation equivariant vector field networks
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
ResNet-50 (e)
-
Deep Residual Learning for Image Recognition
p4m-DenseNet (D4)
-
Rotation Equivariant CNNs for Digital Pathology
Steerable G-CNN (C8)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
Steerable G-CNN (C12)
-
Learning Steerable Filters for Rotation Equivariant CNNs
-
G-CNN (C12)
-
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
DSF-CNN (C8)
-
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images
0 of 16 row(s) selected.
Previous
Next