HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Tutankham
Atari Games On Atari 2600 Tutankham
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
DQN hs
45.6
Deep Reinforcement Learning with Double Q-learning
SARSA
98.2
-
-
DDQN (tuned) noop
218.4
Dueling Network Architectures for Deep Reinforcement Learning
Prior noop
204.6
Prioritized Experience Replay
GDI-I3
423.9
Generalized Data Distribution Iteration
-
R2D2
395.3
Recurrent Experience Replay in Distributed Reinforcement Learning
-
MuZero
491.48
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Prior+Duel noop
245.9
Dueling Network Architectures for Deep Reinforcement Learning
NoisyNet-Dueling
269
Noisy Networks for Exploration
CGP
0
Evolving simple programs for playing Atari games
DDQN+Pop-Art noop
183.9
Learning values across many orders of magnitude
-
GDI-I3
423.9
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
DDQN (tuned) hs
92.2
Deep Reinforcement Learning with Double Q-learning
A3C LSTM hs
144.2
Asynchronous Methods for Deep Reinforcement Learning
GDI-H3
418.2
Generalized Data Distribution Iteration
-
C51 noop
280.0
A Distributional Perspective on Reinforcement Learning
Advantage Learning
245.22
Increasing the Action Gap: New Operators for Reinforcement Learning
DQN noop
68.1
Deep Reinforcement Learning with Double Q-learning
Best Learner
114.3
The Arcade Learning Environment: An Evaluation Platform for General Agents
ASL DDQN
252.9
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
-
0 of 44 row(s) selected.
Previous
Next